Gentamicin Reduces Calcific Nodule Formation by Aortic Valve Interstitial Cells In Vitro.

نویسندگان

  • Aditya Kumar
  • Dena C Wiltz
  • K Jane Grande-Allen
چکیده

PURPOSE Gentamicin is a widely employed antibiotic, but may reduce calcium uptake by eukaryotic cells. This study was conducted to determine whether gentamicin reduces calcification by porcine aortic valvular interstitial cells (pAVICs) grown in 2D culture, which is a common model for calcific aortic valve disease (CAVD). METHODS AND RESULTS The presence of gentamicin (up to 0.2 mM) in the medium of pAVICs cultured for 8 days significantly lowered calcification and alkaline phosphatase content in a dose-dependent manner compared to pAVICs cultured without gentamicin. Gentamicin also significantly increased cell proliferation and apoptosis at concentrations of 0.1-0.2 mM. Next, gentamicin was applied to previously calcified pAVIC cultures (grown for 8 days) to determine whether it could stop or reverse the calcification process. Daily application of gentamicin for 8 additional days significantly reduced calcification to below the pre-calcification levels. CONCLUSIONS These results confirm that gentamicin should be used cautiously with in vitro studies of calcification, and suggest that gentamicin may have the ability to reverse calcification by pAVICs. Given the nephrotoxicity and ototoxicity of this antibiotic, its clinical potential for the treatment of calcification in heart valves is limited. However, further investigation of the pathways through which gentamicin alters calcium uptake by valvular cells may provide insight into novel therapies for CAVD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COX2 inhibition reduces aortic valve calcification in vivo.

OBJECTIVE Calcific aortic valve disease (CAVD) is a significant cause of morbidity and mortality, which affects ≈1% of the US population and is characterized by calcific nodule formation and stenosis of the valve. Klotho-deficient mice were used to study the molecular mechanisms of CAVD as they develop robust aortic valve (AoV) calcification. Through microarray analysis of AoV tissues from klot...

متن کامل

Valve Endothelial Cell-Derived Tgfβ1 Signaling Promotes Nuclear Localization of Sox9 in Interstitial Cells Associated With Attenuated Calcification.

OBJECTIVE Aortic valve disease, including calcification, affects >2% of the human population and is caused by complex interactions between multiple risk factors, including genetic mutations, the environment, and biomechanics. At present, there are no effective treatments other than surgery, and this is because of the limited understanding of the mechanisms that underlie the condition. Previous ...

متن کامل

Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis.

BACKGROUND Aortic valve stenosis characteristically progresses due to cuspal calcification, often necessitating valve replacement surgery. The present study investigated the hypothesis that TGF-beta1, a cytokine that causes calcification of vascular smooth muscle cells in culture, initiates apoptosis of valvular interstitial cells as a mechanistic event in cuspal calcification. METHODS Noncal...

متن کامل

Age-related changes in aortic valve hemostatic protein regulation.

OBJECTIVE Although valvular endothelial cells have unique responses compared with vascular endothelial cells, valvular regulation of hemostasis is not well-understood. Heart valves remodel throughout a person's lifetime, resulting in changes in extracellular matrix composition and tissue mechanical properties that may affect valvular endothelial cell hemostatic function. This work assessed valv...

متن کامل

Paradoxical effects of statins on aortic valve myofibroblasts and osteoblasts: implications for end-stage valvular heart disease.

OBJECTIVES We evaluated the effects of statins on aortic valve myofibroblasts (AVMFs) and osteoblast calcification in vitro. METHODS AND RESULTS Cultured porcine AVMFs and M2-10B4 cells were treated with simvastatin and pravastatin. Mevalonate, a 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase metabolite, was added in parallel experiments. Manumycin A, which inhibits protein preny...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular engineering and technology

دوره 4 1  شماره 

صفحات  -

تاریخ انتشار 2013